Risk Management Plan Quantitative Analysis

From PMGT501

By

Troy Stempfley

Embry-Riddle Aeronautical University Worldwide

PMGT 690

June 25, 2017

Quantitative Risk Analysis from PMGT613

Risk Management Plan (RMP)

By

Troy Stempfley

Embry-Riddle Aeronautical University Worldwide

PMGT 690

June 28, 2017

Z-LAM ENTERPRISE NEW OPERATING MODEL

RISK MANAGEMENT PLAN

Version Number: 3.0 Version Date: 05/15/2016

By

Allen Leckband

Aron Walton

Josh Price

Stephen Bohan

Troy Stempfley

Woodson (Doyle) Hutcheson

A Paper Submitted to ERAU Worldwide in Partial Fulfillment of the Requirements of the Master Science Degree Course PMGT 613

Embry-Riddle Aeronautical University Worldwide Online Campus **2.4.2 Quantitative Risk Analysis – Excel QM.** All figures were compiled using Microsoft QM- Excel except for the information given in the order of precedence table and costs for crashing table.

Table 2.4.2

Data time and predecessors input table

Activity	Time	Pred 1	Pred 2	Pred 3
А	4			
В	6			
С	7	А	В	
D	8	В		
Е	5	В		
F	5	С		
G	7	D		
Н	8	D	Е	
Ι	4	F	G	Н

Data provided as part of the course materials. Table

2.4.2a Data Input, Early Start- Late Finish

Activity	Early Start	Early Finish	Late Start	Late Finish	Slack
А	0	4	6	10	б
В	0	6	0	6	0
С	6	13	10	17	4
D	6	14	6	14	0
E	6	11	9	14	3
F	13	18	17	22	4
G	14	21	15	22	1
Н	14	22	14	22	0
Ι	22	26	22	26	0
	Project	26			

RMP QUANITATIVE ANALYSIS

Crashing costs. As requested the following is the cost of crashing the project to a 14 day

schedule is (see Figure 2.4.2a for cost data):

Project Goal	14 days
Normal time	26
Minimum Time	12
Minimum crash cost to meet Project Goal	\$25,997.67

RMP QUANITATIVE ANALYSIS

					Immediate Predecessors (1 per column)				Intermediate Computations			
					Immedia							
	Normal	Crash		Total Cost	te							
	Time	Time	Normal	with	Predeces				Crash	Crash	Crash	
Activity	(weeks)	(weeks)	Cost	Crashing	sor(s)	Pred 2	Pred 3	Pred 4	days	cost/day	limit	
A	4	:	1 \$8,000	\$9,500					3	500	3	
В	6	:	2 \$12,000	\$15,000					4	750	4	
С	7	:	3 \$14,000	\$20,000	А	В			4	1500	4	
D	8	4	\$19,000	\$31,000	В				4	3000	4	
E	5	:	2 \$13,000	\$15,000	В				3	666.6667	3	
F	5	:	\$9,000	\$10,500	С				2	750	2	
G	7	:	2 \$16,500	\$20,500	D				5	800	5	
Н	8		4 \$ 22,000	\$ 34,000	D	E			4	3000	4	
1	4	:	2 \$ 5,500	\$ 6,500	F	G	Н		2	500	2	

Figure 2.4.2a Data Input for Crashing Cost